Public Health Assessment for

KANEY TRANSPORTATION ROCKFORD, WINNEBAGO COUNTY, ILLINOIS CERCLIS NO. ILD064006901 DECEMBER 23, 1998

U.S. DEPARTMENT OF HEALTH & HUMAN SERVICES
Public Health Service
Agency for Toxic Substances and Disease Registry

EPA Region 5 Records Ctr.

343679

THE ATSDR PUBLIC HEALTH ASSESSMENT A NOTE OF EXPLANATION

This public health assessment was prepared by ATSDR pursuant to the Comprehensive Environmental Response Compensation and Liability Act (CERCLA or Superfund) section 104 (i)(6) (42 U S C 9604 (i)(6)) and in accordance with our implementing regulations (42 C F R Part 90). In preparing this document ATSDR has collected relevant health data environmental data and community health concerns from the Environmental Protection Agency (EPA) state and local health and environmental agencies the community and potentially responsible parties where appropriate

In addition this document has previously been provided to EPA and the affected states in an initial release as required by CERCLA section 104 (i)(6)(H) for their information and review. The revised document was released for a 30 day public comment period. Subsequent to the public comment period. ATSDR addressed all public comments and revised or appended the document as appropriate. The public health assessment has now been reissued. This concludes the public health assessment process for this site unless additional information is obtained by ATSDR which in the agency is opinion indicates a need to revise or append the conclusions previously issued.

Agency for Toxic Substances and Disease Registry

David Satcher M D Ph D Administrator Barry L Johnson Ph D Assistant Administrator

Division of Health Assessment and Consultation

Robert C Williams P E DEE Director

Exposure Investigations and Consultation Branch

John E Abraham Ph D Chief

Federal Facilities Assessment Branch

Sandra G Isaacs Chief

Petitions Response Branch

Acting Chief

Superfund Site Assessment Branch

Sharon Williams Fleetwood Ph D Chief

Program Evaluation Records and Information Services Branch

Max M Howie Jr M S Chief

Use of trade names is for identification only and does not constitute endorsement by the Public Health Service or the U S Department of Health and Human Services

Kaney Transportation Final Release

PUBLIC HEALTH ASSESSMENT

KANEY TRANSPORTATION ROCKFORD, WINNEBAGO COUNTY, ILLINOIS CERCLIS NO ILD064006901

Prepared by

Illinois Department of Public Health Under Cooperative Agreement with the Agency for Toxic Substances and Disease Registry

THE ATSDR PUBLIC HEALTH ASSESSMENT A NOTE OF EXPLANATION

This Public Health Assessment was prepared by ATSDR pursuant to the Comprehensive Environmental Response Compensation and Liability Act (CERCLA or Superfund) section 104 (1)(6) (42 U S C 9604 (1)(6)) and in accordance with our implementing regulations (42 C F R. Part 90). In preparing this document, ATSDR has collected relevant health data, environmental data, and community health concerns from the Environmental Protection Agency (EPA) state and local health and environmental agencies, the community and potentially responsible parties where appropriate

In addition this document has previously been provided to EPA and the affected states in an initial release as required by CERCLA section 104 (i)(6)(H) for their information and review. The revised document was released for a 30 day public comment period. Subsequent to the public comment period, ATSDR addressed all public comments and revised or appended the document as appropriate. The public health assessment has now been reissued. This concludes the public health assessment process for this site unless additional information is obtained by ATSDR which, in the agency s opinion indicates a need to revise or append the conclusions previously issued.

Agency for Toxic Substances & Disease Registry

Jeffrey P Koplan M D M P H Administrator Barry L Johnson, Ph D Assistant Administrator

Division of Health Assessment and Consultation

Robert C Williams P E DEE Director Sharon Williams-Fleetwood, Ph.D Deputy Director

Community Involvement Branch

Germano E Pereira, Chief

Exposure Investigations and Consultation Branch

John E Abraham Ph D Chief

Federal Facilities Assessment Branch

Sandra G Isaacs Chief

Program Evaluation Records and Information

Max M Howie Jr MS Chief

Superfund Site Assessment Branch

Acting Branch Chief

Use of trade names is for identification only and does not constitute endorsement by the Public Health Service or the U S Department of Health and Human Services

Additional copies of this report are available from National Technical Information Service Springfield, Virginia (703) 605 6000

> You May Contact ATSDR TOLL FREE at 1 888-42ATSDR or

Visit our Home Page at http://atsdrl atsdr cdc gov 8080/

FOREWORD

The Agency for Toxic Substances and Disease Registry, ATSDR, was established by Congress in 1980 under the Comprehensive Environmental Response, Compensation, and Liability Act, also known as the Superfund law This law set up a fund to identify and clean up our country's hazardous waste sites. The Environmental Protection Agency EPA, and the individual states regulate the investigation and clean up of the sites.

Since 1986 ATSDR has been required by law to conduct a public health assessment at each of the sites on the EPA National Priorities List. The aim of these evaluations is to find out if people are being exposed to hazardous substances and, if so, whether that exposure is harmful and should be stopped or reduced. (The legal definition of a health assessment is included on the inside front cover.) If appropriate, ATSDR also conducts public health assessments when petitioned by concerned individuals Public health assessments are carried out by environmental and health scientists from ATSDR and from the states with which ATSDR has cooperative agreements

Exposure As the first step in the evaluation, ATSDR scientists review environmental data to see how much contamination is at a site, where it is, and how people might come into contact with it. Generally, ATSDR does not collect its own environmental sampling data but reviews information provided by EPA, other government agencies, businesses, and the public. When there is not enough environmental information available, the report will indicate what further sampling data is needed.

Health Effects If the review of the environmental data shows that people have or could come into contact with hazardous substances ATSDR scientists evaluate whether or not these contacts may result in harmful effects ATSDR recognizes that children, because of their play activities and their growing bodies, may be more vulnerable to these effects. As a policy unless data are available to suggest otherwise, ATSDR considers children to be more sensitive and vulnerable to hazardous substances. Thus, the health impact to the children is considered first when evaluating the health threat to a community. The health impacts to other high risk groups within the community (such as the elderly, chronically ill, and people engaging in high risk practices) also receive special attention during the evaluation.

ATSDR uses existing scientific information, which can include the results of medical, toxicologic and epidemiologic studies and the data collected in disease registries, to determine the health effects that may result from exposures. The science of environmental health is still developing, and sometimes scientific information on the health effects of certain substances is not available. When this is so, the report will suggest what further public health actions are needed

Conclusions The report presents conclusions about the public health threat, if any, posed by a site When health threats have been determined for high risk groups (such as children, elderly, chronically ill, and people engaging in high risk practices), they will be summarized in the conclusion section of the report. Ways to stop or reduce exposure will then be recommended in the public health action plan.

ATSDR is primarily an advisory agency, so usually these reports identify what actions are appropriate to be undertaken by EPA, other responsible parties or the research or education divisions of ATSDR However, if there is an urgent health threat ATSDR can issue a public health advisory warning

people of the danger ATSDR can also authorize health education or pilot studies of health effects, full-scale epidemiology studies, disease registries, surveillance studies or research on specific hazardous substances

Interactive Process The health assessment is an interactive process ATSDR solicits and evaluates information from numerous city state and federal agencies, the companies responsible for cleaning up the site, and the community. It then shares its conclusions with them. Agencies are asked to respond to an early version of the report to make sure that the data they have provided is accurate and current. When informed of ATSDR's conclusions and recommendations, sometimes the agencies will begin to act on them before the final release of the report.

Community ATSDR also needs to learn what people in the area know about the site and what concerns they may have about its impact on their health. Consequently, throughout the evaluation process, ATSDR actively gathers information and comments from the people who live or work near a site, including residents of the area, civic leaders, health professionals and community groups. To ensure that the report responds to the community's health concerns, an early version is also distributed to the public for their comments. All the comments received from the public are responded to in the final version of the report.

Comments If, after reading this report, you have questions or comments, we encourage you to send them to us

Letters should be addressed as follows

Attention Chief, Program Evaluation, Records, and Information Services Branch, Agency for Toxic Substances and Disease Registry, 1600 Clifton Road (E-56), Atlanta, GA 30333

TABLE OF CONTENTS

SUMMARY	1
PURPOSE AND HEALTH ISSUES	1
BACKGROUND	1
DISCUSSION	6
COMMUNITY HEALTH CONCERNS	9
ATSDR CHILD HEALTH INITIATIVE	10
CONCLUSIONS	10
RECOMMENDATIONS	11
PREPARER AND REVIEWER OF REPORT	11
REFERENCES	12
CERTIFICATION	14
TABLES	15
ATTACHMENTS	19

SUMMARY

Kaney Transportation, Inc (KTI) is a 5 4 acre site in a small industrial and residential area about 1 5 miles west of Rockford Illinois KTI operations consist of the transportation of petroleum and resinous substances truck maintenance and storage of some products at the site Past operations have contaminated the soil and groundwater in the area KTI may not be the only source of groundwater contamination in the area, as other petroleum facilities near KTI may have also contributed to the problem

KTI currently poses no apparent public health hazard Former sources of contamination have been removed and nearby residences have been demolished. In the future activities at KTI and nearby petroleum facilities could lead to further soil and groundwater contamination. Considering there is a continuous, non-confined aquifer in the area, there is the danger of further surficial and deep groundwater contamination, the source of private and public wells in the area.

PURPOSE AND HEALTH ISSUES

The Illinois Environmental Protection Agency (IEPA) requested that the Illinois Department of Public Health (IDPH) review the historical and environmental data available to determine if a public health threat exists at the KTI facility KTI operations consist of the transportation of petroleum and resinous substances truck maintenance and storage of some products at the site

BACKGROUND

The site was placed on the Comprehensive Environmental Response Compensation, and Liability Information System (CERCLIS) on September 26–1990, because of IEPA s concern about the potential contamination of soil, groundwater and surface water [1]. The facility received its initial Comprehensive Environmental Response Compensation, and Liability Act (CERCLA) evaluation in March 1991 when a Preliminary Assessment report was done. IEPA collected soil sediment, and groundwater samples in November 1991 and later completed a CERCLA Screen Site Inspection (SSI) report. On August 30–1994. IEPA decided that no enforcement action was necessary at the present time, and closed the KTI compliance file [2].

KTI is a 5 4 acre site in a small industrial and residential area about 1 5 miles west of the city limits of Rockford Winnebago County Illinois (Attachment 1) Its main office is on Meridian Road and the shop which is the object of this report is on Cunningham Road. The site is bordered by Marathon Petroleum Company to the west. Cunningham Road. Torch Oil, and Badger Pipeline Company to the north a residential area to the east and Illinois Central Gulf Railroad line to the south (Attachment 2). Vacant land lies beyond the railroad tracks. An underground petroleum and propane pipeline runs north and south on the west side of the KTI property [3].

Before 1958, the property was used for agricultural purposes Operations at KTI began between 1970 and 1971 From about January 1974 to March 1979 KTI specialized in the transportation

of a variety of liquids and gases, including gasoline fuel oil propane resins asphalt, varnishes latexes and paints. During that time both the interior and exterior of the trailer tanks were washed on the site. The waste water flowed from the floor drains through a pipe into a holding pond south of where the trucks were washed. According to the IEPA Division of Water Pollution Control files, KTI released about 300 gallons of waste water into the lagoon per week. The lagoon measured approximately $100 \times 100 \times 8$ feet. When full, the waste was pumped into a tank truck and hauled to the Rockford Sanitary District (RSD) for proper disposal. In 1977 heavy metals and cyanide of an unknown source were detected in the effluent, and RSD prohibited KTI from disposing of effluent discharge from the on-site lagoon.

Heavy snow in the winters of 1976-1977 and 1978-1979 made access to the lagoon difficult Occasionally the waste in the lagoon was observed overflowing into an adjacent corn field and to a stream about 150 feet east of the lagoon. The stream flowed several hundred feet where it reached a residential property and discharged into a private pond about 1 200 feet downstream. The liquid waste was reportedly oily with reddish, rusty coloring and giving off 'unpleasant, sickening odors. A resident recounted oil scum on ducks and swans swimming in the pond. The pond was considered contaminated due to the odd tasting fish, several dead fish, and discoloration originating from the unnamed creek. Before the contamination, the pond had been used for fishing and boating.

In March 1979 KTI ceased the internal washing of its trailers as part of a settlement with IEPA The conditions of the settlement included

- the removal and proper disposal of all contaminated materials associated with the lagoon (solid wastes liquid wastes, and sludge)
- the installation of a clay base of no less than 1 foot deep for the lagoon floor and
- ► an impermeable industrial liner covering the clay base

The waste was never to overflow the lagoon, but was to be properly disposed In November 1981 two stainless steel holding tanks were placed in the lagoon area and used for the storage of external wash water The lagoon was brought to grade by 1993

In May 1985, a Resource Conservation and Recovery Act (RCRA) inspection revealed KTI was generating hazardous waste consisting of xylene used to clean their tank trailers KTI's president agreed to ship the hazardous waste material to Acme Solvents By June 1985 KTI had shipped 500 gallons of used xylene and claimed no longer to use xylene for cleaning

In June 1989 KIT reported a solvent release on their property. During the investigation, about 40 whole drums 30 drum fragments and ten 5-gallon buckets containing solvents resins and caustic materials were discovered buried on the site. KTI believed that this material was buried 12 to 15 years ago. IEPA analysis of the drum contents and the contaminated soil showed the presence of several halogenated organic compounds. At IEPA s request. KTI expanded their investigation into both on-site soil and groundwater. The drums and the contaminated soil were removed to a depth of 14 feet below the grade as a voluntary cleanup under IEPA supervision.

In July 1989 three underground storage tanks (UST) were removed from the KTI property These consisted of two 275-gallon tanks used for the storage of solvents on the east side of the dispatch building and one 550-gallon tank used to store waste oil on the building s west side The 2 solvent tanks were installed sometime in 1970 or 1971 and used until the mid to late 1970s in the process of washing road tar from the trailers. During the removal, they discovered that the two 275-gallon tanks were leaking solvent. Chlorinated solvents were detected in soil samples taken from the east and west excavations where the USTs had been. The tanks were transported to a facility for proper disposal, and visqueen was placed over both excavation holes. KTI brought the holes to grade using clean backfill in the east solvent contaminated area and using soil contaminated with waste oil in the west excavation area.

The history of the KTI site is intertwined with that of the nearby residences and other petroleum industries. Residents living near the site complained repeatedly about the pollution of their private wells. In 1981, IEPA received a complaint about a private well contamination from a resident living near the intersection of the Meridian and Cunningham Roads. Subsequent groundwater samples collected by the Winnebago County Health Department (WCHD) detected purgeable organic carbon and purgeable organic halides in the well water. In January 1986 IDPH and WCHD conducted additional sampling of the homes and industries in the area. Because of this sampling. WCHD advised residents of 4 homes to use alternative drinking water (Attachment 3). In February and March 1986, several meetings were conducted with IEPA, IDPH. WCHD, and the petroleum handling facilities near Cunningham and Meridian Roads to discuss the groundwater contamination. Several facilities (KTI. Torch, Clark. Badger, and Marathon) agreed to band together to supply the residents with bottled water.

In October 1989 a family wrote a letter to then President Bush complaining that KTI had not remediated the groundwater contamination. Subsequently, the Executive Office referred the matter to the U.S. Environmental Protection Agency (USEPA). USEPA formed a Technical Assistance Team that initiated an investigation in the area near the Cunningham and Meridian Roads. The contamination affected 6 residences and 8 commercial facilities, mainly petroleum facilities. This investigation, dubbed the Falconer Well Study, began in February 1990 when water samples were collected directly from the well taps [4]. The study concluded that an actual or potential human exposure to hazardous contaminants in drinking water existed. Based upon the results, IEPA requested that KTI provide whole-house filtration systems to the homes receiving bottled water. KTI committed to the installation of either whole-house filtration or deep wells for the houses with contaminated wells.

In the spring of 1990 at the request of KTI Mittelhauser Corporation conducted a study to find the extent of contamination for the KTI property [5] The investigation included the sampling of soil and shallow groundwater monitoring wells. Mittelhauser also sampled the water well at the house east of the facility

In October 1991 a potentially responsible party (PRP) group which included KTI began the installation of new private wells into St Peter Sandstone in an attempt to provide safe drinking water to the residents with contaminated wells. However, after successfully installing one well

the subsequent attempts failed Sampling results showed much higher levels of volatile organic compounds (VOCs) in the new well than in the shallow well at this location. The PRP group gave up the installation of new residential wells. They decided to buy and demolish the houses with contaminated wells.

In July 1994 USEPA and IDPH staff conducted an indoor air study in a nearby home to evaluate the potential exposure to contaminants in their private well [6] Measurable quantities of several VOCs had been reported in water samples collected from their private well since 1986. The residents had been drinking bottled water but a possible exposure to water pollutants existed by inhalation and skin contact during showers and other bathroom-related activities, and by long-term inhalation within the home.

By the late summer of 1994 the 3 houses with contaminated private wells were demolished (Attachment 3) In February 1995, IEPA collected water samples from wells about 15 feet deep on 5 private properties in the area [7]

On May 4 1996 two unrelated gas spills occurred in the area [8] Approximately 38 000 gallons of gasoline overflowed out of a large tank at the Clark Oil Refining storage station at Cunningham and Meridian roads, and 12 hours later, and 2 blocks away, 5 000 gallons of gasoline spilled at Badger Pipeline on Cunningham Road The excess gasoline was contained on the property in a clay drainage dike area, and later, a private contractor vacuumed it Oil spills in the area were also noted in the past Before 1971, an employee of "Arco an oil company at the site where Clark Oil stands today witnessed many spills from fuel oil and gasoline on the grass These spills reportedly were in the thousands of gallons and the spill sank into the ground

KTI property is approximately 815 feet above sea level. The surficial soils over much of the grassy areas consists of light brown silty loam. On about 1/3 of the site soil had been covered with asphalt and aggregate fill. The soils consist of silty clays down to approximately 10 feet. However, not as much clay is found near the southern end of the facility because of erosion. Commonly, a moist sand layer is found next to the surficial soils. Silt is the primary ingredient from 10 feet to about 28 feet. For the next 6 feet the loam turns sandy and contains clay silt, gravel, and cobbles.

There are 3 major aquifers in the area 1) sand and gravel 2) a series of dolomites and sandstones known as the Cambrian-Ordovician deep sandstone system, and 3) the Elmhurst-Mt Simon system. Groundwater was encountered at approximately 25 to 30 feet below the ground surface beneath the facility property. The depth to the water table corresponds closely to the depth of the top of the sandy till. A saturated or moist upper sand zone is under much, but not all of the site, and is about 10 feet in depth. Because this aquifer does not have a confining layer it is considered a continuous aquifer. A June 1990 Mittelhauser Report stated that groundwater flows east-northeast with a flow velocity of 234 feet per year. Regional well logs document drinking water wells using water at depths ranging from 34 to 308 feet.

Winnebago County derives all of its public water from groundwater sources The nearest municipal well lies less than 2 miles away and serves the city of Rockford with a population of 140 000 Within a 4-mile radius from the site the distribution of the population is

Distance in miles	0 - 1/4	1/4 - 1/2	1/2 - 1	1 - 2	2 - 3	3-4
Number of municipal wells	0	0	0	1	3	5
City of Rockford population	NA	NA	NA	4 118	12 354	20 590
Outside city boundaries population	22	25	282	891	1 192	1 018
Total	22	25	282	5 009	13 546	21 608

NA=not applicable

Private industries and residents near KTI that are outside the city boundaries use drinking water from private wells. The KTI facility on Cunningham Road uses drinking water from a deep well installed in 1991. The use of drinking water from the original well was discontinued due to contamination. There are 5 full time, on-site workers and about 6 truck drivers that are occasionally on the site. The nearest residential well is approximately 50 feet east of KTI.

The facility stands on undulating topography outside the 500-year flood boundary according to the National Flood Insurance Rate Map. The maximum relief as measured from the upper northwest corner to the low-lying southeast corner is approximately 20 feet. Much of this relief occurs near the south border of KTI where a narrow creek flows northeast along the facility property. The creek flows to a recreational pond about 1 200 feet east of the facility and Meridian Road. A small dam at the east end of the pond controls the flow out of the pond in a northeastward direction until it runs into North Fork Kent Creek. This creek flows south for approximately 260 yards at which point it turns east and enters Levings Lake. After leaving Levings Lake, this water body feeds into Rock River near a fishery for important game fish species. No surface water intakes are within 15 miles downstream.

IDPH completed a site visit on November 19 1997 A 7-foot high, chain-link fence runs along the western and northern perimeters of the facility (Attachment 4). The northern fence is topped with barbed wire and has a lockable gate. A wooden fence runs approximately 1/4 of the way from Cunningham Road along the eastern perimeter. It continues with a chain-link fence farther south and separates the site from a nearby house and farm facilities. A gully runs along the edge of trees and bushes for the last 1/4 of the eastern site perimeter. The southern perimeter has no fence. The facility was well kept and clean. The structures on the site consist of a building and 4 above-ground storage tanks. The building has offices in the northern portion and the shop area in the southern part. Storage tanks stand upright in the middle of the property. Sheltered pumps for gas delivery are on the west side of the tanks. An estimated 1/3 of the site is covered with asphalt pavement. Trailer tanks are parked along the edges and the middle of the site. An area

of asphalt about 5 yards by 2 yards in size is in the middle of the southern 1/3 of the site where the lagoon had been. This asphalt area is surrounded by grass. Nine monitoring wells exist on the site one in the asphalt area.

DISCUSSION

IDPH compared the concentration of each chemical detected during sampling with appropriate comparison values used to select contaminants for further evaluation for carcinogenic and non-carcinogenic health endpoints. The levels of metals were compared with IEPA mean soil concentrations from urbanized areas expected to represent naturally occurring soil background in Illinois. Contaminants exceeding comparison values and those for which no comparison was available were selected for further evaluation for both non-cancerous and cancerous health effects. The selected contaminants their concentrations on the site and off the site and comparison values are presented in Table 1 and Table 2.

A detailed discussion of each of the comparison values used is found in Attachment 7 Exceeding a comparison value does not mean adverse health effects will occur upon exposure The amount of the contaminant, the duration and route of exposure and the health status and receptivity of exposed individuals are important factors in determining if negative health effects will occur

The Mittelhauser Corporation study in the spring of 1990 included soil and groundwater sampling. Some VOCs were detected in soil in the UST areas, but all chemicals were found at levels well below the comparison values. Benzene, 1,2-dichloroethane, cis-1 2-dichloroethene, toluene trichloroethene and vinyl chloride were detected in many groundwater monitoring wells at levels above the comparison values but not exceeding the health protective guidelines. Benzene and vinyl chloride were also found in a residential well at concentrations that might cause a low increased risk of getting cancer over a lifetime exposure. The study concluded that the presence of VOCs in both upgradient and downgradient monitoring wells suggests that sources other than KTI are responsible for the aquifer contamination. Increased levels of xylene and ethylbenzene in the former eastern UST area suggest that contamination here originated from past facility storage operations. However, the reliability of the study is reduced by the fact that the specified detection limits for many chemicals were above the comparison values.

In November 1991 an IEPA inspection team collected 9 soil and sediment samples and 6 groundwater samples (Attachment 5 & 6) The soil and sediment samples were collected on the site and near the site within areas of suspected contamination. The samples were collected from 0 to 2 feet depth. Table 3 gives the locations, depths, and physical appearances of individual samples. Because each sample represented a mixed sample it was impossible to separate data on surface soil (less than or equal to 3" deep) from data on subsurface soil (more than 3" deep). Soil sample X103 collected west of Marathon Oil and north of the rail road served as a background sample. Soil and sediment samples X101 and X104 were collected on the site, and X102 X106 X107 X108 and X109 were collected east of the site, in a residential area. Soil sample X105 was collected south of KTI

Sediment samples for the unnamed creek (X106 X107) and residential pond (X108 X109) were collected instead of surface water samples. The groundwater samples included 4 from on-site monitoring wells and 2 from privately owned wells. Sample G203 was taken from a private well approximately 850 feet northwest of KTI and served as a background sample. Samples G101 G102 G104 and G109 were collected on the site, and G202 from a private well approximately 0.25 miles northeast of KTI at the corner of Cunningham and Meridian Roads. During the CERCLA Screening Site Inspection, a photo-ionization detector was used to detect the presence of certain airborne contaminants. Except sample G102 no documented releases to the air were noted.

None of the contaminants detected in on-site and off-site soil and sediment samples were present at levels that might be harmful if people are exposed to them. Several VOCs were found in on-site monitoring wells at levels above the comparison values. Vinyl chloride was found at a concentration of 0.03 milligrams per liter (mg/L) in sample G101 collected from the eastern border of KTI property. next to a home. High levels of toluene (6.1 mg/L) naphthalene (1.2 mg/L) and 1-ethyl-3-methyl-benzene (23 mg/L) were detected in monitoring well G102 on the western site border near the Marathon Oil Co. A petroleum-type product was floating atop the water level in monitoring well G102, and the photo-ionization reading for this well registered 300 units above the background. Metals such as aluminum and antimony were detected in all on-site monitoring wells, but not at levels above comparison values.

The Quality Assurance/Quality Control (QA/QC) plan obtained from IEPA, states that field data and sampling quality during the site assessment were satisfactory. No analytical problems were noted in the QA/QC summary except for calcium and magnesium in soil from the lagoon and naphthalene toluene and trichloroethene in on-site monitoring wells. Calcium magnesium, and toluene were estimated values. Naphthalene and trichloroethene were identified at a secondary dilution factor because their initial concentrations exceeded the calibration range.

The July 1994 indoor air samples showed that in the living room air benzene was the only waterborne contaminant identified. Other chemicals detected may have been related to cigarette smoking. During shower use, there was a continuous build up of the waterborne contaminants in the shower stall air. These data parallel the contaminant levels detected in the pre-shower and post-shower breath of the resident. The pre-shower breath samples showed no detectable levels of the waterborne contaminants except benzene, but the post-shower breath contained benzene 12-dichloroethane cis-12-dichloroethylene trichloroethylene and vinyl chloride. The post-shower breath contaminants were due to the inhalation and skin exposure associated with the 10 minute shower.

One of the private wells sampled in February 1995 contained elevated levels of benzene toluene, ethylbenzene and xylene However except for toluene the contaminants were detected at concentrations below the comparison values

Adverse health effects may occur in exposed individuals when a contaminant reaches people through an exposure pathway. An exposure pathway consists of a source of contamination

environmental media and transport mechanisms a point of exposure a route of exposure and a receptor population. Exposure to a contaminant may have occurred in the past, may be occurring now, or may occur in the future. When all the five elements that link the contaminant source to an exposed population are known, a completed exposure pathway exists. When information on one or more of the five elements is missing, only a potential exposure pathway exists.

In the past, hazardous waste sources at KTI were the drum disposal area, underground storage tanks contaminated soils, and the lagoon. Various amounts of petroleum products and VOCs were found at these locations. However, as part of the voluntary clean up in June 1989, the buried drums and underground storage tanks were removed, along with about 300 cubic yards of contaminated soils. The contaminated materials from the lagoon were also removed, and properly disposed, and the lagoon floor was covered with a clay base and an impermeable industrial liner. Later, the lagoon was brought to grade. KTI also stopped using xylene to clean its trucks. All these activities managed to contain, reduce, and remove the past sources of hazardous waste. The 1991 soil and sediment sampling revealed that no contaminants remained in those media at levels above comparison values.

Still some contaminants migrated to the groundwater and were detected in on-site monitoring wells at levels that might pose a health hazard if people were exposed to them. These contaminants were naphthalene vinyl chloride toluene, and 1-ethyl-3-methyl benzene. The 5 full-time workers at the site and about 6 transient truck drivers could have been exposed by drinking contaminated water. The KTI wells draw water from a continuous aquifer with no confining layers to hinder pollutant migration to shallow and deep groundwater.

Groundwater flows east-northeast where a residential area exists. Both private and public water supplies might become contaminated. The annual assessment of the municipal wells has not revealed contamination of the public water supply but toluene was found in private wells providing water to residents in nearby houses. These residents, estimated at about 15 people, might have been exposed in their homes by drinking contaminated water by skin contact and by inhalation of VOCs during washing and showering. This completed exposure pathway (Table 4) could have occurred in the past, before petroleum facilities in the area provided residents bottled water for drinking and the houses with contaminated water were demolished. No exposure pathways connected to the site currently exist. Still, activities at KTI and the nearby petroleum facilities might pose a health risk in the future if oils or related product spill and contaminate soils and groundwater.

IDPH used the maximum detected level of contaminants to estimate the exposure dose for onsite workers and truck drivers. This may result in an overestimate of the actual exposure. A worker drinking 1.5 liters of contaminated water daily, 5 days per week, for more than a year, may receive a dose of naphthalene toluene and vinyl chloride that could result in adverse health effects. The comparison of estimated exposure doses to health guidelines are shown in Table 5 Scientists do not know if there are any harmful effects in humans to long-term exposure to high levels of 1-ethyl-3-methyl benzene [9] Up to 1 year exposure to estimated doses of naphthalene may cause the destruction of red blood cells anemia, nausea, vomiting abdominal pain, diarrhea, and liver and kidney damage [10] Low to moderate daily exposure to toluene can cause tiredness confusion weakness, drunken-type actions memory loss and loss of appetite These effects are more likely to occur when inhalation is the primary route of exposure [11] Exposure to the estimated dose of vinyl chloride by ingestion is not likely to cause noncancerous health effects. However, vinyl chloride is known to cause cancer in humans, and prolonged drinking of contaminated water may increase the risk of getting cancer in exposed individuals [12]

COMMUNITY HEALTH CONCERNS

In June 1993 staff from IEPA and IDPH sampled private wells at nearby homes and interviewed residents about the history of their well contamination. At the time, all residents were drinking bottled water provided by the petroleum facilities in the vicinity. Water from their private well was used for vegetable gardens and to tend horses and domestic animals. Residents raised the following health-related concerns. We have addressed each of the community concerns about health as follows.

Will people drinking contaminated water get sick? Is there any link between a resident getting cancer back in 1981 and chemicals in the drinking water?

Although some residents might have been exposed to naphthalene, toluene and vinyl chloride by drinking contaminated water or inhaling these chemicals during showering it is very unlikely that their exposure was high enough to cause harmful health effects. At the concentrations detected in private wells, a long-term exposure period would be necessary for harmful health effects to occur. There was no documented long-term exposure. Because no information was provided about the cancer patient from 1981, it is impossible to discuss any connection with the inhalation of vinyl chloride. Inhalation of high levels of vinyl chloride for a long time is known to cause cancer in humans, especially liver cancer. However, only experimental animal studies exist to relate cancer with ingesting vinyl chloride.

Will the use of contaminated water harm animals (pets, horses) and vegetable gardens?

It is unlikely that the detected levels of toluene naphthalene and vinyl chloride in well water will have a harmful effect on pets horses and cultivated vegetables. When watering gardens a portion of naphthalene volatilizes to the atmosphere. The remaining naphthalene enters the soil and is rapidly degraded by reacting with the soil and by microbes in the soil. It is unlikely to enter the plants and the food chain. Vinyl chloride is rapidly removed from the water through volatilization into the air. It is also broken down in the soil, but to a lesser extent than naphthalene. It is not likely to accumulate into plants and the food chain. Toluene is also removed from the water by volatilization into the air oxidation processes and by microbial

action Toluene has a tendency to concentrate in fatty tissues but it does not accumulate in plants that contain no fat

3 Kids swim and play in an area swimming pool Will they be hurt if the pool is filled with contaminated water?

The levels of contaminants detected in the private wells in the past was unlikely to cause harmful health effects for the brief exposure children would have swimming and playing in the pool. At the present time, there is no private well water contamination detected.

Residents also raised several questions about property values and liability issues These issues are beyond the focus of this public health assessment

This health assessment was available for public comment from August 28 to September 27, 1998 All grammatical and structural comments have been incorporated into this final version No comments regarding the content and conclusions of this health assessment were received

ATSDR CHILD HEALTH INITIATIVE

ATSDR and IDPH, through ATSDR s Child Health Initiative recognize that the unique vulnerabilities of infants and children demand special emphasis in communities faced with the contamination of their environment. Children are at a greater risk than adults from certain kinds of exposure to hazardous substances emitted from waste sites. They are more likely exposed because they play outdoors and because they often bring food into contaminated areas. They are shorter than adults which means they breath dust soil, and heavy vapors close to the ground. Children are also smaller resulting in higher doses of chemical exposure per body weight. The developing body systems of children can sustain permanent damage if toxic exposures occur during critical growth stages. Most importantly children depend completely on adults for risk identification and management decisions, housing decisions and access to medical care.

IDPH evaluated the likelihood for children living near the site to be exposed to contaminants at levels of health concerns. Children were likely exposed to chemical contaminants in the past but there are currently no completed exposure pathways affecting children at the site. Should private wells still in use downgradient of the site be affected by contamination in the future children in these houses may be exposed to the contaminated water.

CONCLUSIONS

Based on the information reviewed IDPH concludes

1 KTI poses no apparent public health hazard at the present time Former hazardous sources of contaminants were removed. In the past on-site workers and transient truck drivers could have been exposed to harmful levels of toluene, naphthalene and vinyl

chloride by drinking on-site contaminated water. Long-term exposure for at least 1 year could cause negative health effects such as anemia, digestive problems, tiredness and drunken-type actions, and slightly increase the risk of getting cancer.

- 2 KTI may not be the only source of past groundwater contamination in the area Other petroleum facilities functioning in the immediate vicinity might contribute to the drinking water contamination in the nearby residences
- In the future activities at KTI and nearby petroleum facilities might lead to soil and groundwater contamination. Considering there is a continuous, non-confined aquifer in the area, there is the danger of surficial and deep groundwater contamination, the source of private and public drinking water wells

RECOMMENDATIONS

IDPH recommends

- 1 Conduct periodic monitoring of area private wells to ensure that no exposure is occurring to hazardous substances at levels of public health concern Monitor the public water supply as required
- 2 Prevent migration of contaminants to soil and groundwater

PREPARER AND REVIEWER OF REPORT

Preparer

Constanta E Mosoiu
Environmental Toxicologist
Illinois Department of Public Health

Reviewer

Ken Runkle Environmental Toxicologist Illinois Department of Public Health

ATSDR REGIONAL REPRESENTATIVE

Louise Fabinski Regional Services Region V Office of the Assistant Administrator

ATSDR TECHNICAL PROJECT OFFICERS

Gail Godfrey
Division of Health Assessment and Consultation

Steve Inserra
Division of Health Studies

Courtney Jones
Division of Health Education and Promotion

REFERENCES

- 1 IEPA Kaney Transportation, Inc Superfund/HRS 'CERCLA Preliminary Assessment Report' March 1991
- 2 IEPA Memorandum from Paul R Jagiello to File 109-91 August 30 1994
- 3 IEPA Kaney Transportation Inc Superfund/HRS 'CERCLA Screening Site Inspection Report
- Weston-Major Program Division Site Assessment for Falconer Well, Rockford Illinois May 1990
- Mittelhauser Corporation Extent of Contamination Study for Kaney Transportation Inc Rockford Illinois" June 1990
- Andrew B Lindstrom & Joachim D Pell 'Use of the Personal Whole Air Sampler and Single Breath Canister Method in a Waterborne Volatile Organic Compound Exposure Study Submitted to Applied Occupational and Environmental Hygiene April 27, 1995
- Analytical Report from Weston Environmental Metrics Inc to Mr Ron Turpin IEPA March 14 1995
- 8 Rockford Register Star Gas spills close unrelated Tuesday May 7 1996

- 9 Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profile for Ethylbenzene (Update) September 1997
- 10 ATSDR Toxicological Profile for Naphthalene (Update) August 1995
- 11 ATSDR Toxicological Profile for Toluene' (Update) May 1994
- 12 ATSDR Toxicological Profile for Vinyl Chloride (Update) September 1997

CERTIFICATION

This Kaney Transportation Inc Public Health Assessment was prepared by the Illinois Department of Public Health under a cooperative agreement with the Agency for Toxic Substances and Disease Registry (ATSDR) It is in accordance with approved methodology and procedures existing at the time the public health assessment was begun

Technical Project Officer

Division of Health Assessment and Consultation

ATSDR

The Division of Health Assessment and Consultation ATSDR has reviewed this public health assessment and concurs with its findings

Richard E/Gillig

Chief State Programs Section

Division of Health Assessment and Consultation

ATSDR

Table 1 Soil and Sediment sampling of November 7, 1991

A.											
Chemicals mg/kg (ppm)	X 103 Background	X 101 On-site	X 104 On-site	X 105 Off-site	X 106 Off-site	X 107 Off-site	X 109 Off-site	X 108 Off-site	X 102 Off-site	Trip Blank	Comparison Values mg/kg
Phenanthrene				••	_	1 40		0 78			0 14 (ATSDR) ¹
Crysene	_					0 95				<u> </u>	0 64 (ATSDR) ¹
Benzo(a)pyrene		_	_			0 80					0 10 (CREG) 1 30 (ATSDR) ¹
Inorganics			,							,	
Aluminum	8 930	9 470	5 880	7 440	8 930	7,320	5 830	9 690	11,200		9 500 (ŒPA)²
Antimony						-	99 50	-			20 (RMEG) 4 (IEPA) ²
Calcium			23 400 J								9 300 (IEPA) ² 2000 (RMEG)
Cobalt		13 80	9 90	24 40	11 90	18 80	13			_	8 9 (IEPA)²
Magnesium			13 800 J	3						-	4820 (IEPA) ²
Sulfate			52 10		132	154	107	613			85 5 (IEPA)²

mg/kg = milligrams of contaminant per kilogram of soil = parts per million (ppm)

[—] The compound was analyzed for but not detected

J = Indicates an estimated value

¹Agency for Toxic Substances and Disease Registry Toxicological Profile for Polycyclic Aromatic Hydrocarbons

²Illinois Environmental Protection Agency A Summary of Selected Background Conditions for Inorganics in Soil

CREG = Cancer Risk Evaluation Guide

RMEG = Reference Dose Media Evaluation Guide

Table 2 Groundwater Samples Collected November 6 and 7, 1991

	, , ,		Sampling	A Company of the Comp				
Chemicals mg/kg (ppm)	G 203 Background	G 104 On-site	G 102 On-site	G 109 On-site	G 101 On-site	G 202 Off-site	Trop Blank	Comparison Values (1976)
Vınyl Chlonde			_	-	0 03	_		0 0002 (EMEG) 0 002 (MCL) ¹
Trichloroethane	_	-	_	0 023	0 091 D	0 01		0 005 (MCL) ¹
Tetrachloroethane		_	_		0 018	-	-	0 005 (MCL) ¹
Toluene		-	6 l J					0 20 (EMEG) 1 (MCL) ¹
Naphthalene		0 14 D	1 2				-	0 20 (EMEG)
1 Ethyl 3 Methyl Benzene	-	.	23					0 70 (MCL) ¹
Inorgames				,		4		/ / E / "
Aluminum		14 20	30	12 30	14 90		-	0 05-0 20 (SMCL) ¹
Antimony		0 03	0 21	0 402	_		-	4 (RMEG) 0 006 (MCL) ¹
Manganese	_	3 32	4 52	1 95	1 040	0 963		0 05 (RMEG) 0 05 (SMCL) ¹
Nickel		0 45	0 397	_	0 031	-		0 20 (RMEG) 0 10 (MCL) ¹
Vanadium		0 054	0 071			0 015		0 03 (EMEG)

mg/L = milligrams of contaminant per liter of water = parts per million = ppm

The compound was analyzed for but not detected

MCL = Maximum Contaminant Level

SMCL = Secondary Maximum Contaminant Level

EMEG = Environmental Media Evaluation Guide (ATSDR)

RMEG = Reference Dose Media Evaluation Guide (ATSDR)

¹United States Environmental Protection Agency Drinking Water Regulations and Health Advisories February 1996

D = Indicates compound at a secondary dilution

J = Indicates an estimated value

 Table 3
 Soil Samples Description

Sample	Depth	Appearance	Location
X101	0 6"	Dark silty clay	West boundary of KTI
X102	1 - 4"	Black nondescript humous/topsoil	Southwest corner of a nearby house backyard
X103	0 - 6"	Brownish/ black topsoil	East of South Weldon Rd North of R R tracks & west of barbed wire fence
X104	6" - 2'	Very sandy with clay waste oil-like odor	Lagoon area
X105	0 - 4"	Brown clay with sand & gravel	3' north of gas pipe south of KTI s southern boundary
X106	0 - 4"	Brown silty clay with sand and some gravel	22'11"south of southern lagoon boundary 75'9" east of east boundary fence of site
X107	0 - 2"	Clay with fine brown sand some pebbles	Southwest corner of Cunningham and Meridian Rd West of culvert
X108	4 - 8"	Very black with organic matter	East end of the pond
X109	0 -2"	Black with organic matter	West end of the pond

Table 4 **Completed Exposure Pathways**

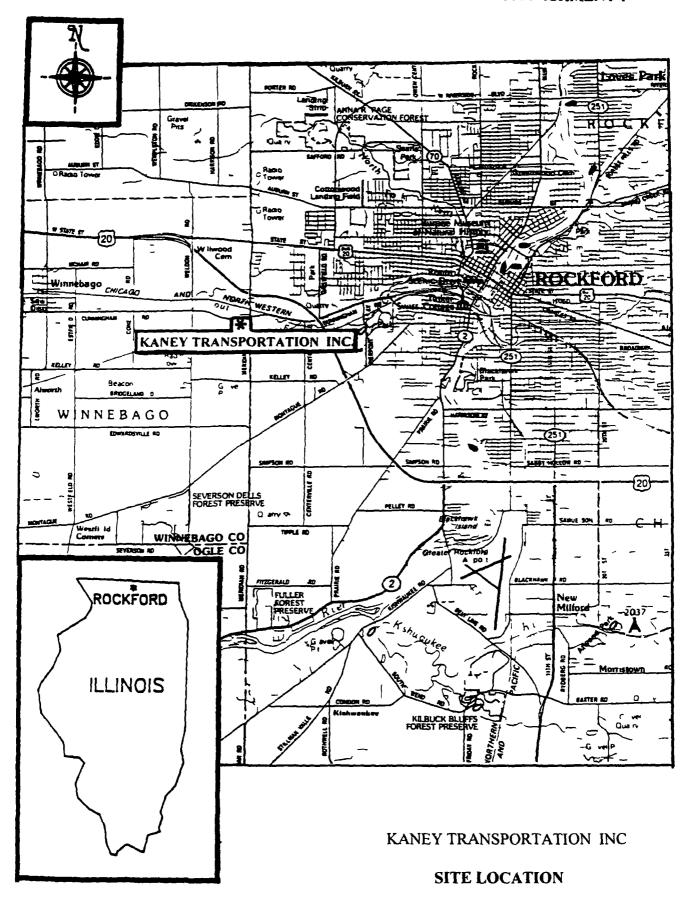
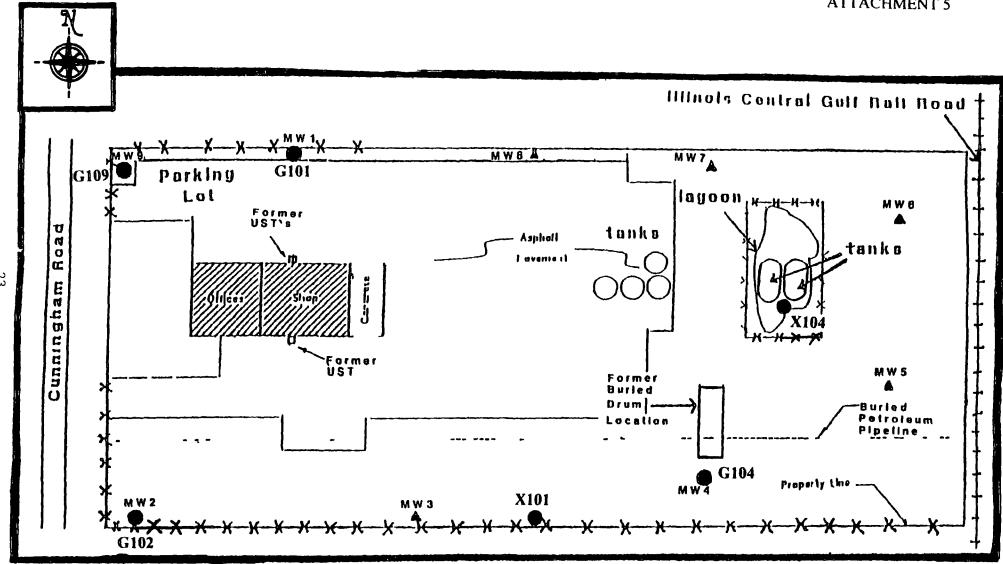

Pathway Name	Source	Medium	Exposure Point	Exposure Route	Receptor Population	Time of Exposure	Expositive Activities	Estimated Number Exposed	Chemicals
Private Wells on the site	KTI	Groundwater	Taps	Ingestion	Employees on the site and transient truck drivers	Past	Drinking	10	See Table 5
Private Wells off the site	KTI	Groundwater	Residences	Ingestion Inhalation Dermal	Area Residents	Past	Using contaminated household water	15	See Table 5

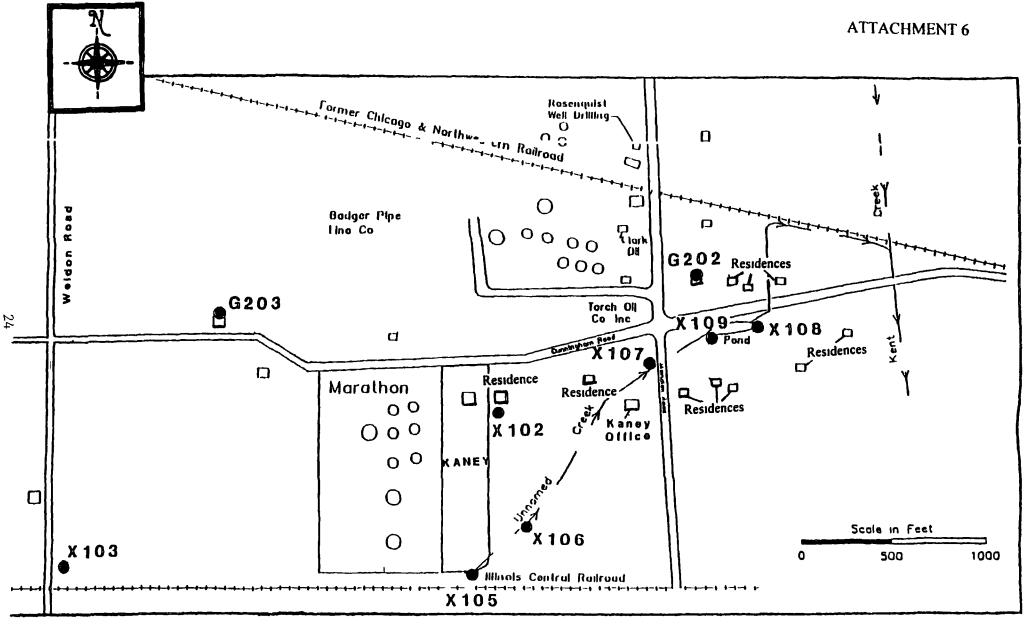
Table 5 Comparison of Estimated Exposed Dose* to Health Guidelines

Cardainasast	T	Health Guidelings for Ingestion (mg/kg/day)*					
Confamulant	Exposure Pathway	Value	Source	Exceeded by Estimated Exposure Dose			
1-ethyl 3 methyl benzene	Private Well (on site)	0 1	Chronic oral RfD ²	Yes			
Naphthalene	Private Well (on site)	0 02	Intermediate oral MRL ³	Yes			
Toluene	Private Well (on site) Private Well (residence)	0 02	Intermediate oral MRL ³	Yes			
Vinyl Chloride	Private Well (on site)	0 00002	Chronic oral MRL ³	Yes			

The maximum detected contaminant concentration used to calculate the exposure dose 1 mg/kg/day= milligrams of contaminant per kilogram of body weight per day 2 Reference Dose (EPA) 3 Minimal Risk Level (ATSDR)

ATTACHMENT I


Diagram of IDPH Site Visit of November 19, 1997

- G000= Groundwater sample
- X000= Soil and Sediment sample
- ▲ Existing monitoring well

KANEY TRANSPORTATION INC

On site Samples Locations Collected November 1991

● G000= Groundwater sample

KANLY TRANSPORTATION INC

Off-site Samples Locations Collected November 1991

[●] X000= Soil and Sediment sample

ATTACHMENT 7

Comparison Values Used in Selecting Contaminants of Concern

Reference Dose (RfD) is an estimate of a daily exposure to a chemical that is likely to be without an appreciable risk of harmful effects during a lifetime of exposure. It was developed by USEPA and is expressed in units of milligrams of contaminant per kilogram of body weight per day (mg/kg/day)

Minimal Risk Level (MRL) is an estimate of daily human exposure to a chemical that is likely to be without an appreciable risk of harmful non-carcinogenic effects over a specified duration of exposure. It does not protect hypersensitive individuals. MRLs were developed by ATSDR and are expressed in mg/kg/day.

Cancer Risk Evaluation Guides (CREGs) are estimated contaminant concentrations based on one excess cancer in a million individuals exposed to a chemical over a lifetime (70 years) These are very conservative values designed to protect sensitive members of the population

Reference Dose Media Evaluation Guides (RMEGs) are estimates of a daily oral exposure to a chemical that is unlikely to produce any non-cancerous adverse health effects over a lifetime. They are based on USEPA reference doses (RfDs) and are conservative values designed to protect sensitive members of the population.

Environmental Media Evaluation Guides (EMEGs) are comparison values developed by ATSDR for chemicals that are relatively toxic frequently encountered at National Priority List (NPL) sites and present a potential for human exposure. They are derived to protect the most sensitive members of the population (e.g. children) and are not cut-off levels but rather comparison values. They do not consider carcinogenic effects chemical interaction multiple route of exposure or other media-specific routes of exposure. They are very conservative concentration values designed to protect the public

Maximum Contaminant Level (MCL) is the maximum permissible level of a contaminant in water which is delivered to any user of a public water supply that is protective of adverse human health effects

Secondary Maximum Contaminant Level (SMCL) is the maximum permissible level of a contaminant in drinking water that do not affect aesthetic qualities of the water such as odor taste and color and are related to public acceptance. These levels are not federally enforced